Study non-ionic detergent and synthetic pesticides to control in main sucking pest of cotton

Document Type : Research Paper

Authors

1 Cotton Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran

2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مازندران

3 Graduate of Agricultural Entomology Agricultural jahad office, Khorasan razavi

Abstract

Background and objectives: Sucking cotton pests that break out at a certain time during the cotton season have always played a key role in reducing yield and fiber quality. Therefore, efforts have always been made to develop effective chemical control methods to control different species of sucking pests with only one spray
Materials and methods: In this study, the efficacy of the treatments was investigated: 1- non-ionic soap solution (2000 ppm); 2- spirotetramat; 3- imidacloprid; 4- Eforia® (thiamethoxam + lambda-cyhalothrin); 5- mixture of soap (1%) and spirotetramat; 6-Mixture of soap (1%) and imidacloprid; 7- Eforia® and non-ionic soap (1%); 8- Buprofezin insecticide (Applaud ®); 9- Buprofezin with non-ionic soap (1%); 10- Dinotefuran (Starkle ®) and control, against some important cotton aphid pests including Aphis gossypii, Bemisia tabaci and Creontiades pallidus were evaluated in 2018 with three replicates in a randomized complete block design by reaching the threshold and sampling before, 3, 7, 14 and 21 days after spraying under field conditions in Mazandaran and Golestan provinces. Efficiency of treatments was calculated based on percent mortality modified by the Henderson-Tilton formula.
Results: The results of mortality due to initial effects (3 days) and residues (21 days) in both provinces showed that the efficacy of the two insecticides imidacloprid and spirotetramat with nonionic soap against Aphis gossypii and Creontiades pallidus. Buprofezin proved to be a suitable treatment for whitefly control
Conclusion: Non-ionic soaps can be recommended for use with insecticides. On the other hand, non-ionic soap eliminates not only sucking pests but also honeydew to prevent sooty mold and improve cleanliness.

Keywords


  1. Baniameri, V. 2008. Study of the efficacy of different concentrations of insecticidal soap, in comparison oxydemeton-methyl (Metasystox) to control Aphis gossypii in greenhouse cucumber. IOBC WPRS BULLETIN 32: 13-16.
  2. Butler, J.R., Henneberry, T.J., Stansly, P.A., and Schuster, D.J. 1993. Insecticidal effects of selected soaps, oils and detergents on the sweetpotato whitefly:(Homoptera: Aleyrodidae). Florida Entomol 76:161–167.
  3. David, P.M.M., Rajkumar. K., Razak, T.A., et al. 2010. Efficacy of castor oil-based soft soaps against cotton mealy bug, Phenacoccus solenopsis Tinsley on brinjal. Karnataka Journal Agriculture Science. 23:169–170
  4. Dravish Mojeni, T. and Alishah, O. Study on infestation rate of new cotton lines to important pests- sucking in Golestan province. Iranian Journal of Cotton Researches. 1(2): 69-84. (in Persian with English Abstract).
  5. M.S. 2016. Bioefficacy of some biorational insecticides for the control of Aphis gossypii Glover, 1877, (Hemiptera: Aphididae) on greenhouse grown cucumber. Acta Agriculturae Slovenica. 107:419.
  6. Fasihi, M.T., and Heydari, A. 2010. A study of efficiency of Eforia 247SC and pyrethrum against on cucumber whitefly (Bemisia tabaci). Research NO: 04-16-16-88068. Iranian Research Institute of Plant protection.
  7. Gill, ,  and Raupp,  M.  1989.  Control  of  azalea  lace  bug  using  insecticidal soap  and  neem.  Journal  of  American  Rhododendron  Society.  43(4): 216-217.
  8. Gong, Y., Shi. X., Desneux, N., and Gao, X. 2016 Effects of spirotetramat treatments on fecundity and carboxylesterase expression of Aphis gossypii Ecotoxicology. 25:655–663
  9. Hal, D.G., and Richardson, M.L. 2013. Toxicity of insecticidal soaps to the Asian citrus psyllid and two of its natural enemies. Journal of Applied Entomology. 137: 347–354.
  10. Hanchinal, S.G., Patil, B.V., and Sreenivas, A.G. 2017. Management of mealybug, Phenacoccus solenopsis Tinsley of cotton with insecticides and biorationals. Journal of Cotton Research and Development. 31:102–107.
  11. Heinz, M., Newman, J.P.,  and Parrella,  M.P.  1988.  Biological  control  of leaf  miners  on  greenhouse  marigolds.  California  Agriculture.  42(2): 10-12.
  12. Hoegger, P. 2017. Insecticide Mixtures Comprising Loline Alkaloids. Syngenta international ag. Us20190313646.
  13. Imai, T., Tsuchiya, ,  and Fujimori.  T.,  1997.  Effect  of  water  hardness  on  the activity of  insecticidal  soap  for  the  green  peach  aphid,  Myzus  persicae (Sulzer)  (Hemiptera:  Aphididae). Applied  Entomology  and  Zoology. 32(1): 245-246.
  14. M.B. 1994. Botanical insecticides and antifeedant: new sources and perspective. Pesticide Research Journal. 6: 11-19.
  15. Kerns, D.L., Yates, J.A., and Baugh, B.A. 2015. Economic Threshold for Cotton Aphid (Hemiptera: Aphididae) on Cotton in the Southwestern United States. Journal of Economic Entomology. 108(4):1795-803.
  16. Mahboobi, M.R., and Avarand, A. 2019. Analysis of reasons for the decrease the area cotton cultivation Case: Central District of Gonbad-e Kavos County. Iranian Journal of Cotton Researches. 6(1): 43-64. (in Persian with English Abstract).
  17. Özgür, O., Atakan, E., and Pehlivan, S. 2019. Investigation of the damage of Miridae species on cotton in Çukurova Region of Turkey. Turkish Journal of Entomology, 43 (2), 143-156.
  18. C.R., and Sadof, C.S. 2017. Efficacy of Horticultural Oil and Insecticidal Soap against Selected Armored and Soft Scales. Horttechnology. 27:618–624.
  19. Soratur, M., Rani, D., Naik, S.M., and Jagadesh, K.S. 2017. Efficacy of selected insecticides against aphids and Leaf hoppers in Cowpea (Vigna unguiculata (L.) Walp.). Journal of Entomology and Zoology Studies. 5:281–284
  20. Tan, Y., Biondi, A., Desneux, N., Gao, X-W. 2012. Assessment of physiological sublethal effects of imidacloprid on the mirid bug Apolygus lucorum (Meyer-Dür). Ecotoxicology. 21:1989–1997.
  21. Udikeri, S.S., Patil, S.B., and Hirekurubar, R.B. 2009. Management of sucking pests in cotton with new insecticides. Karnataka Journal of Agricultural Sciences .22:798–802
  22. Ullah, F., Gul, H., and Yousaf, H.K. 2019. Impact of low lethal concentrations of buprofezin on biological traits and expression profile of chitin synthase 1 gene (CHS1) in melon aphid, Aphis gossypii. Scientific Reports. 9:12291-12300.
  23. Vandervoet, T., Ellsworth, P., Carriere, Y., and Naranjo, S.E. 2018. Quantifying conservation biological control for management of Bemisia tabaci (Hemiptera: Aleyrodidae) in cotton. Journal of Economic Entomology. 111:1056-1068.
  24. Wakelyn, P.J. 2013. Cotton: Technology for the 21st Century. International Cotton Advisory Committee. 475p.
  25. Wanumen, A.C., Sánchez-Ramos, I., and Viñuela, E. 2016. Impact of Feeding on Contaminated Prey on the Life Parameters of Nesidiocoris Tenuis (Hemiptera: Miridae) Adults. Journal of Insect Science. 16:103.
  26. Z., Zhang. X., Liu. F., and Mu, W. 2015. Insecticide susceptibility of the green plant bug, Apolygus lucorum Meyer-Dür (Homoptera: Miridae) and two predatory arthropods. Journal of Plant Protection Research. 55:362–370
  27. T.M.. Vachris. J.W. 1990. Insecticidal  soap  reduces  infection  by two mechanically  transmitted  plant  viruses.  PlantDisease.  74(3):  201-202.