تجزیه ژنتیکی عملکرد و اجزای آن در پنبه با استفاده از روش تجزیه میانگین نسلها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی

2 2- مرکز تحقیقات، آموزش و ترویج کشاورزی و منابع طبیعی فارس سازمان تحقیقات، آموزش و ترویج کشاورزی، داراب، ایران

10.22092/ijcr.2024.366484.1221

چکیده

سابقه و هدف: بررسی نحوه توارث، نوع عمل ژن‌ها و تعیین راهبردهای مؤثر اصلاحی بمنظور بهبود صفات زراعی از اهمیت ویژه‌ای برخوردار است. تجزیه میانگین نسل‌ها یکی از بهترین روش‌ها برای برآورد پارامترهای ژنتیکی و میزان توارث‌پذیری صفات است. این پروژه با هدف بررسی و تعیین پارامترهای ژنتیکی دخیل در نحوه وراثت صفات مورفولوژیک و اجزای عملکرد چهار رقم پنبه با استفاده از تجزیه میانگین نسلها طراحی و اجرا شد.
 
مواد و روش‌ها: به منظور تجزیه ژنتیکی و نحوه وراثت صفات مورد بررسی، نسل‌های BC1,F2,F1, P2, P1و BC2  دورگهای پنبه طی سالهای 1400-1399 تولید شده و در سال 1401 در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سه منطقه مورد ارزیابی و مقایسه قرار گرفتند. پس از انجام تجزیه واریانس و مشاهده تفاوت معنی‌دار بین نسل‌ها، تجزیه ژنتیکی صفات با استفاده از روش متر و جینکز بر اساس مدل سه و شش پارامتری انجام شده و میانگین و خطای معیار هر یک از صفات در نسل‌های مختلف محاسبه شد.
 
یافته‌ها: تجزیه واریانس صفات مورد بررسی نشان داد بین مناطق و ارقام مورد بررسی اختلاف معنی‌داری از لحاظ آماری وجود دارد بطوری‌که در ایستگاه هاشم‌آباد رقم ارمغان و در ایستگاه‌های کارکنده و داراب رقم گلستان بیشترین عملکرد وش را به خود اختصاص داد. بین نسلهای مختلف تفاوت معنی داری از نظر ارتفاع بوته، طول و تعداد شاخه زایا و تعداد غوزه مشاهده نشد. اما از لحاظ وزن غوزه، درصد کیل، عملکرد و زودرسی تفاوتها معنی‌دار بود. بطوریکه کمترین وزن غوزه، کمترین درصد کیل و کمترین عملکرد متعلق به والد دانه سبز P1 بود. بیشترین عملکرد وش مربوط به نتاج F2 بود که میانگین عملکردی معادل 2899 گرم در کرت داشت. این برتری را می‌توان به تنوع موجود در این نسل نسبت داد. همچنین تفاوت عملکرد والد دانه سبز با والد دانه سفید مشهود بود.
 
نتیجه‌گیری: برتری عملکرد نتاج نسبت به والدین بیانگر وجود اثر غالبیت در کنترل این صفت می‌باشد. بررسی نتایج نشان داد که برای صفات وزن غوزه و تعداد شاخه زایا اثرات افزایشی و غالبیت × افزایشی نقش عمده‌ای در کنترل توارث این صفات دارند. معنی‌دار شدن اثر افزایشی نشان می‌دهد که بهترین روش اصلاحی برای آن صفات استفاده از انتخاب و خودگشنی می‌باشد. برای صفات دیگری نظیر درصد کیل اثر متقابل غالبیت × غالبیت نقش بیشتری داشته است. وجود علامت مخالف بین اثرات، احتمال اثرات اپیستازی دوگانه را تقویت می‌کند. بیشتر بودن مقدار واریانس غالبیت از واریانس افزایشی و درجه غالبیت بیشتر از یک بیانگر این است که انتخاب تحت این شرایط قابل تثبیت نمی‌باشد و انجام دورگ گیری  جهت نیل به اهداف اصلاحی مورد نظر برای صفات مذکور روش مؤثرتری از انتخاب خواهد بود.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Genetic analysis for yield and its components in cotton by generation mean analysis method

نویسندگان [English]

  • Mohsen Fathi Sadabadi 1
  • Mitra Vanda 2
1 Cotton Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
2 2- Fars Agricultural & Natural Resources Research & Education Center, Agricultural Research, Education and Extension Organization (AREEO), Darab,Iran.
چکیده [English]

Background and Purpose: Understanding inheritance patterns, gene action types, and effective breeding strategies is crucial for improving agricultural traits. Generation mean analysis is a powerful method for assessing genetic parameters and heritability of traits. This study was designed to investigate the genetic parameters involved in the inheritance of morphological traits and yield components in four cotton cultivars through generation mean analysis.
 
Materials and Methods: To analyse the genetic inheritance of traits, P1, P2, F1, F2, BC1, and BC2 generations were produced in 2020-2021. These generations were evaluated in 2022 using a randomized complete block design with three replications across three regions. After performing analysis of variance and identifying significant differences among generations, genetic analysis was conducted using the Method of Jinks and Hayman with three- and six-parameter models. The means and standard errors for each trait were calculated across the different generations.
 
Results: The variance analysis revealed significant differences among regions and cultivars. At Hashemabad, the Armaghan variety yielded the highest, whereas at Karkandeh and Darab, the Golestan variety was superior. No significant differences were found among generations in terms of plant height, number and length of reproductive branches, and number of bolls. However, significant variations were observed for boll weight, lint percentage, yield, and earliness. The lowest boll weight, lint percentage, and yield were associated with the green seed parent (P1). The F2 progeny exhibited the highest yield, averaging 2899 g/plot, which may be attributed to its genetic diversity. Additionally, performance differences between the green seed parent and the white seed parent were evident.
 
Conclusion: The superior performance of progenies relative to their parents suggests the presence of a dominance effect in controlling these traits. For boll weight and number of reproductive branches, both additive and dominance × additive effects are significant. The prominence of the additive effect indicates that selection and self-pollination are effective breeding methods for these traits. In contrast, traits such as lint percentage were more influenced by dominance × dominance interactions, indicating potential double epistasis effects. The dominance variance exceeded the additive variance, and the degree of dominance was greater than one, suggesting that selection alone may be inadequate. Therefore, hybridisation may be a more effective approach for achieving breeding objectives for these traits.
 

کلیدواژه‌ها [English]

  • Cotton
  • Generation Mean analysis
  • Hybridization
  • Selection
  1. Abou el-Yazied, M.A., Soliman Y.A.M. and EL-Mansy, Y.M. 2014. Efectiveness of recurrent selection for improvement of some economic characters in Egyptian cotton. Cotton Research Institute, ARC, Giza. Egypt. Journal Agricultural Research, 92 (1),135-50
  2. Abd-El Salam, M.E. Studies on breeding and maintenance of cotton varieties. (G. barbadense L). Ph.D. Thesis. Fac. Agric. Kafer EL. Sheikh Tanta Uni.
  3. Akhtar, N., and Chowdhry, M.A. 2006. Genetic analysis of yield and some other quantitative traits in bread wheat. International Journal of Agriculture and Biology 4:523-527.
  4. Ahmadian, S., Mortazavian, S.M.M. Ebrahimi, M., Amini, F., Ghorbani Javid, M. and Foghi, B. 2016. Genetic analysis of some morphological traits in wheat using generation mean analysis under normal and drought stress conditions. Journal of Crop Breeding, 8(2): 175-182 (In Persian).
  5. Allard, R.W. 1960. Principles of plant breeding. John Wily and Sons. New York.
  6. Amiri, R., Bahraminejad, S., and Cheghamirza, K. Generation mean analysis for some agronomic traits at two bread wheat crosses under two different moisture conditions. Environmental stresses in crop sciences.  Vol. 16, No. 4, pp. 887-904. http://dx.doi.org/10.22077/ESCS.2023.5120.2110
  7. Alaedin, N., Navabpour, S., and Fathi Sadabadi, M. 2021. Investigation of the relationship between quantitative and qualitative characteristics with yield and yield components in cotton cultivars. Iranian Journal of Cotton Research, 9:2. 145-64. DOI:22092/IJCR.2021.356497.1178
  8. Ale-Mahdy, E.E., Ismal, A.A., Wad, H.Y.A. and Ohamed, A.A. 2007. The relative merits of breeding and modified recurrent selection in improving seed cotton yield in two segregating population of Egyptian cotton ( barabadens L.). The Second Plant Breeding Conference. October 2,2001:61-79
  9. Alishah, O. 2021. Assessment of genetic variability, heritability and association of plant attributes with lint yield and fiber quality in advanced lines of cotton (Gossypium hirsutum). Iranian Journal of Crop Sciences, 22(4): 350-364 (In Persian with English abstract).
  10. Amjad Ali, M., Ahmad Khan, I., Awan, S.I., Ali, S. and Niaz, S. 2008. Genetics of fiber quality traits in cotton (Gossypium hirsutum). Australian Journal of Crop Science. 2(1):10-17.
  11. Azizi, F., Rezai, A.M., and Saeidi, G. 2006. Generation mean analysis to estimate genetic parameters for different traits in two crosses of corn inbred lines at three planting densities. Journal of Agricultural Science and Technology 8(2): 153-169.
  12. Baghizadeh, A., Taleei, A., Naghavi, M.R. and Zeinaly, H. 2004. An evaluation of inheritance for some quantitative traits in barley using generation means analysis. Iranian Journal of Agricultural Sciences. 35(4): 851-857.
  13. Basal, H., Canavar, O., Khan, N.U., and Cerit, C.S. 2011. Combining ability and heterotic studies through line× tester in local and exotic upland cotton genotypes. Pakistan Journal of Botany. 43(3):1699-1706.
  14. Doulati, M.A.,  Alishah, O.,  Mohammady, A. 2015. Estimation of genetic parameters and gene action for yield and yield components in cotton (Gossypium hirsutum). Applied Agricultural Research. 27 (105):10-17.
  15. Fathi Sadabadi, M., and Vanda, M. 2021. Selection of elite lines of Hekmat cotton cultivar. Final Reportes Cotton Research Institute of Iran. (In Persian with English Abstract).
  16. Ghannadha, M.R. 1998. Gene action for latent period of stripe rust in five cultivars of wheat. Iranian Journal of Crop Sciences. 1: 53-71 (in Persian).
  17. Kashif, S., Xue, L., Qi tingxiang, Guo liping, Tang huini, Zhang xuexian, Wang hailin, Zhang meng, Zhang bingbing, Qiao xiuqin, xing chaozhu and wu jianyong. 2019. Genetic analysis of yield and fiber quality traits in upland cotton (gossypium hirsutum) Cultivated in different ecological regions of china. Journal of cotton research 2:14 journal of cotton research https://doi.org/10.1186/s42397-019-0031-4
  18. Kearsey, M. J. and Pooni, H. S. 1996. The Genetical Analysis of Quantitative Traits. Chapman & Hall. London.
  19. Lamkey, K.R., and Lee, M. 2005. Quantitative genetics, molecular markers and plant improvement. http://corn2.agron.iastate.edu/Lamkey/Publications/PDF/australia.htm
  20. I. and Karmer, H.H. 1951. Segregation for yield, height and maturity following a soybean cross. Agronomy Journal. 43:605-609
  21. Mather, K. and Jinks, J.L. 1982. Biometrical Genetics. Methuen, London,162 PP
  22. Nyombayire, A. Derera, J. and Sibiya, J. 2018. Genotype x environment interaction and stability analysis for grian yield of diallel cross maize hybrids across tropical medium and highland ecologies. Journal of Plant Science. 6(3):101–6. https://doi.org/10.11648/j.jps.20180603.14.
  23. Reddy, K.B., Reddy, V.C., and Ahmed, M.L. 2016. Combining ability study for yield and its component traits through diallel mating design in upland cotton (Gossypium hirsutum). J Cotton Res Dev. 30(2):180–4.
  24. Sheikh, S., Singh, I. and Singh, J. 2000. Inheritance of some quantitative traits in bread wheat (Triticum aestivum). Annals of Agricultural Research, 21: 51-54.
  25. Toklu, F. and Yagbasanlar, T. 2007. Genetic analysis of kernel size and kernel weight in wheat ( aestivum L.). Asian Journal of Plant Science, 6: 844-848.
  26. Sahar, A., Zafar, M.M., Razzaq, A., Manan, A., Haroon, M., Sajid, S., Rehman, A., Mo, H., Ashraf, M., Ren, M., Shakeel A. and Yuan, Y. 2021. Genetic variability for yield and fiber related traits in genetically modified cotton. Journal of Cotton Research, 19(4):1-9.
  27. Song, M., Fan, S., and Pang, C. 2015. Genetic analysis of fiber quality traits in short season cotton (Gossypium hirsutum). Euphytica. 202(1): 97–108. https://doi.org/10.1007/s10681-014- 226-x.
  28. Valu, M.G., Madariya R.B., Khanpara, M.D., Ribadiya, K.H., Vekaria, R.K. and Pansuriya, A.G. 2015. Genetic architecture of seed cotton yield and its components in cotton (Gossypium hirsutum). AGRES- An International e-Journal. 4(2):171-177.
  29. Warnner, J. N. 1952. A method for estimating heritability- Agron. J.44:427-430
  30. Ware, J.O. 1932. Inheritance of lint colors in Upland cotton, Agron. J. 24. 550– 562.
  31. Zeng, L. and Wu, J. 2012. Germplasm for genetic improvement of lint yield in upland cotton: genetic analysis of lint    yield    with   yield    Euphytica, 187(2): 247–61.