ارزیابی تنوع گونه‌ای، کارکردی و ساختار جوامع علف‌های‌هرز مزارع پنبه استان گلستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی بخش گیاهپزشکی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان

2 کارشناس ارشد شناسایی و مبارزه با علفهای هرز، بخش گیاهپزشکی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان

3 محقق علفهای هرز، بخش گیاهپزشکی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان

چکیده

به‌منظور بررسی فلور و ارزیابی تنوع گونه‌ای، کارکردی و ساختار جوامع علف‌های‌هرز مزارع پنبه استان گلستان، جمعیت علف‌های‌‌هرز در شهرستان‌های مختلف این استان در سال زراعی 1391 مورد مطالعه قرار گرفت. نمونه‌برداری‌ها به‌صورت تصادفی و در ادامه به روش سیستماتیک و طبق الگوی W با استفاده از کادر 5/0× 5/0 متر‌مربعی انجام شد. جمعیت علف‌های‌هرز در مرحله غنچه دهی پنبه به تفکیک جنس و گونه شناسایی و شمارش گردید. در این مطالعه 38 گونه علف‌هرز متعلق به 16 خانواده‌ی گیاهی شناسایی گردید که بیشترین تعداد گونه را به ترتیب خانواده‌های Poaceae (10 گونه) و Amaranthaceae (4 گونه) به خود اختصاص دادند. خانواده‌های Poaceae، Cyperaceae و Fabaceae به‌ترتیب مهم‌ترین خانواده‌‌‌‌‌‌‌‌های گیاهی از نظر فراوانی نسبی بودند. نتایج نشان داد که 76 درصد علف‌های‌هرز موجود یک‌ساله و 24درصد نیز چندساله بودند. همچنین71 درصد علف‌های‌هرز گزارش شده جزو پهن‌برگان و 29درصد باقیمانده در گروه باریک‌برگان جای گرفتند. اویارسلام (Cyperus rotundus) از نظر فراوانی نسبی مهمترین علف‌هرز از گروه باریک‌برگان (جگن‌ها) و خارشتر (Alhagi camelorum) مهمترین علف‌هرز از گروه پهن-برگان در مزارع پنبه استان بود. بیشترین تعداد گونه در شهرستان‌های علی‌آباد و آق‌قلا (هرکدام 16 گونه) و کمترین آن در شهرستان کردکوی (8 گونه) مشاهده گردید. در بین شهرستان‌های مورد مطالعه علی‌آباد و آق‌قلا، علی‌آباد و گالیکش، علی‌آباد و بندرگز به‌ترتیب با 63، 62 و 62 درصد دارای بیشترین درجه تشابه گونه ای علف‌‌های هرز و کردکوی و آق‌قلا با 8 درصد دارای کمترین درجه تشابه بودند. بیشترین شاخص تنوع شانون در گالیکش (13/2) و کمترین آن در کردکوی (57/1) مشاهده شد. بیشترین شاخص تنوع سیمپسون متعلق به ‌بندرگز و بندرترکمن (29/0) و کمترین آن متعلق به گالیکش (15/0) بود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of species, functional and structural diversity of weeds in Golestan province cotton fields

نویسندگان [English]

  • Msoumeh Younesabadi 1
  • Leila Habibian 2
  • Alireza Savarinejad 3
1 Plant Protection Dept. Golestan Agricultural and Natural Resources Research and Education Center
2 Weed Science expert, Plant Protection Dept. Golestan Agricultural and Natural Resources Research and Education Center
3 Plant Protection Dept. Golestan Agricultural and Natural Resources Research and Education Center
چکیده [English]

In order to study of flora, functional and structural diversity of weed species, cotton fields of Gloestan province (6 cities) were surveyed during 2012 year. Randomized sampling method as W shape was conducted by using 0.5×0.5-meter quadrate, systematically. In this study, 38 weed species belong to 16 families were recorded which most of them were from Poaceae by 10 species and Amaranthaceae by 4 species. Among different weed families,Poaceae, Cyperaceae and Fabaceae had the most relative abundance in cotton fields, respectively. Based on the results, 76% of recorded weeds were annual and the rest were perennial, also 71% of identified weeds were broad-leaved and the rest were narrow-leaved. Cyperus rotundus and Alhagi camelorum were the most important weeds from narrow-leaved and broad-leaved weeds, respectively. The highest number of species were observed in Ali Abad and Aq Qala (16 species) and the lowest observed in Kord koy (8 species). Among different cities, Ali Abad and Aq Qala (63%), Ali Abad and Galikesh (62%) and Ali Abad and and Bandar Gaz (62%) had the highest similarity index but Kord koy and Aq Qala had the lowest similarity index (8%). The highest Shanon diversity index (2.13) was observed in Galikesh city and the lowest value (1.57) observed in Kord koy city. The highest Simpson diversity index (0.29) was observed in Bandar Gaz and Bandar Torkaman cities and the lowest value (0.15) observed in Galikesh city.

کلیدواژه‌ها [English]

  • Diversity
  • Relative abundance
  • Similarity
  • Simpson and Shanon index
Cotton, Nutrient use efficiency, Potassium uptake 1. Abay, A. 2009. Potassium Fertilization of Cotton. Communications and zing plant tissue samples. Pp. 389-428. In: R. L. Westerman (ed), Soil testing and plant analysis. 3rd ed. Book series No. 3. SSSA, Inc. Madison, WI., USA.
7. Cassman, K.G., Kerby, T.A., Roberts, B.A., Bryant, D.C., and Higashi, S.L. 1990. Potassium nutrition effects on lint yield and fiber quality of Acala cotton. Crop Sci. 30: 672-677.
8. Chen, J., and Gabelman, W.H. 1995. Isolation of tomato strains varying in potassium acquisition using a sand-zeolite culture system. Plant Soil 176: 65-70.
9. Cope, J.T. 1981. Effects of 50 years of fertilization with phosphorus and potassium on soil test levels and yields at location. Soil Sci. Soc. Am. J. 45: 342-347.
10. Damon, P.M., and Rengel, Z. 2007. Wheat genotypes differ in potassium efficiency under glasshouse and field conditions. Aust. J. Agric. Res. 58: 816–825.
11. Damon, P.M., Osborne, L.D., and Rengel, Z. 2007. Canola genotypes differ in potassium efficiency during vegetative growth. Euphytica 156: 387–397.
12. Gerick, T.J., Morrison, I.E., and Chichester, F.W. 1987. Effects of controlled-traffic on soil physical properties and crop rooting. Agron. J. 79: 434-438.
13. Gilroy, S., and Jones, D.L. 2000. Through form to function: Root hair development and nutrient uptake. Trends Plant Sci. 5: 56–60.
14. Gormus, O., and Yucel, C. 2002. Different planting date and potassium fertility effects on cotton yield and fiber properties in Cukurova region, Turkey. Field Crop Res. 78: 141-149.
15. Gunes, A., Inal, A., Alpaslan, M., and Cakmak, I. 2006. Genotypic variation in phosphorus efficiency between wheat cultivars grown under greenhouse and field conditions. Soil Sci. Plant Nut. 52: 470-478.
16. Hajiboland, R., and Salehi, S.Y. 2006. Characterization of zinc efficiency in Iranian rice genotypes. I. Uptake efficiency. Gen. Appl. Plant physiol. 32: 3-4. 191-206. 
17. Howard, D.D., Essington, M.E., Hayes, R.M., and Percell, W.M. 2001. Potassium fertilization of conventional and notill cotton. J Cotton Sci. 5: 197-205.
18. Johnson, C.M., Strout, R., Broyer, T.C., and Carlton, A.B. 1957. Comparative chlorine requirements of different plant species. Plant Soil, 8: 327–353
19. Krishnasamy, R., Jegadeeswari, D., Surendran, U., and Sudhalakshmi, C. 2005. Screening of sorghum (Sorghum bicolor) genotypes for their iron efficiency. World J. Agric. Sci. 1(1): 98-100.
20. Leigh, R.A., and Wyn Jones, R.G. 1984. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol. 97: 1. 1-13.
21. Leyval, C., and Berthelin, J. 1989. Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: Influence on P, K, Mg, and Fe mobilization from minerals and plant growth. Plant Soil 117: 103-110.
22. Makhdum, M.I., Pervez, H., and Ashraf, M. 2007. Dry matter accumulation and partitioning in cotton (Gossypium hirsutum L.) as influenced by potassium fertilization. Biol. Fertil. Soils, 43: 295-301.
23. Marschner, H. 1998. Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Res. 56: 203-207.
24. Martin, W.H., and Sparks, D.L. 1985. The behavior of non-exchangeable K in soils. Commun. Soil Sci. Plant Anal. 16: 133-162.
25. Mengel, K., Rahmatullah and Dou, H. 1998. Release of potassium from the silt and sand fraction of loess-derived soils. Soil Sci. 163: 10: 805-813.
26. Noshad, H., Abdolahian, M., and Babaei, B. 2012. Effect of Nitrogen and Phosphorous Application on the Efficiency of Nitrogen Uptake and Consumption in Sugar Beet (Beta vulgaris L.). Iranian J Field Crop Sci. 43(3): 529-531.
27. Oya, K. 1972. Evaluation of potassium availability of four Michigan soils. Sci. Bull Coll. Agri. Univ. Ryukyus, 19: 123-257.
28. Page, A.L., Miller, R.H., and Keeney, D.R. 1982. Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties. ASA, INC. SSSA, Inc. Madison, Wisconsin, USA.
29. Pettigrew, W.T. 2003. Relationships between insufficient potassium and crop maturity in cotton. Agro. J. 95: 1323-1329.
30. Reddy, K.R., Hodges H.F., and Varco, J. 2000. Potassium nutrition of cotton. Bulletin 1094. Mississippi Agricultural and Forestry Experiment Station, Mississippi.
31. Rengel, Z., and Damon, M.P. 2008. Crops and genotypes differ in efficiency of potassium uptake and use. Physiol. Plant. 133: 624-636.
32. Rengel, Z., and Marschner, P. 2005. Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol. 168: 305-312.
33. Rauzati, M. 1975. Results of chemical fertilizers trials on wheat, cotton and sugar beet in Esfahan. Technical bulletin No. 359, Soil and Water Research Institute, Tehran, Iran.
34. Salardini, A.A. 2003. Soil fertility. Tehran University Press, 410p.
35. Sale, P.W.G., and Campbell, L.C. 1987. Differential responses to K deficiency among soybean cultivars. Plant Soil 104: 183–190.
36. SAS Institute. 1988. SAS/STAT Users Guide, Release 6.03. Cary, NC: SAS Institute.
37. Sattelmacher, B., Horst, W.J., and Becker, H.C. 1994. Factors that contribute to genetic variation for nutrient efficiency of crop plants. J Plant Nut. Soil Sci. 157(3): 215-224.
38. Shea, P.E., Gerloff, G.C., and Gabelman, W.H. 1968. Differing efficiencies of potassium utilization in strains of snapbeans, Phaseolus vulgaris L. Plant Soil 28: 337-346.
39. Shiranirad, A.H., Alizadeh, A., and Hashemi-Dezfuli, A. 2000. The Study of vesicular-arbuscular mycorrhizae fungi, phosphorus and drought stress effects on nutrient uptake efficiency in wheat. Seed and Plant Improvement journal 16: 3. 327-349. (In Persian)
40. Suelter, C.H. 1985. Role of potassium in enzyme catalysis. Pp. 337-350. In: R.D. Munson (ed.). Potassium in agriculture. ASA, CSSA, SSSA, Madison, WI., USA.
41. Syers, J.K. 1998. Soil and plant potassium in agriculture. Proc. the Fertiliser Society Series. Pub. Int. Fertil. Soc. 32p.
42. Tataro, A. 1972. Results of chemical fertilizers trials on wheat, cotton and sugar beet. Technical bulletin No. 337, Soil and water research institute, Tehran, Iran.
43. US-National Cotton Council. 2015. Production Ranking MY 2014. National cotton council. Available from http://www.cotton.org/econ/cropinfo/cropdata/rankings.cfm, Internet, Accessed 8 April 2015.12.26.
44. Varco, J.J. 2000. No-tillage cotton responds to potassium fertilization on high CEC soils. Better Crops 84: 4. 21-23.
45. Wang, L., Cheng, F., and Wang, K.Y. 2010. Progress and expectation of the research on plant K efficiency and its evaluation. Soils 42(2): 164-170. (In Chinese)
46. Wang, X., Mohamed, I., Xia, Y., and Chen, F. 2014. Effects of water and potassium stresses on potassium utilization efficiency of two cotton genotypes. J Soil Sci. Plant Nut. 14(4): 833-844.
47. White, C.C. 1991. Contrasting patterns of boll development in relation to potassium supply in two contrasting cultivars of acala cotton. M.Sc. Thesis, University of California, Davis.
48. Xia, Y., Jiang, C.C., Chen, F., Lu, J.W., and Wang, Y.H. 2011. Differences in growth and potassium-use efficiency of two cotton genotypes. Commun. Soil Sci. Plant Anal. 42:132-143.
49. Xia, Y., Jiang, C.C., Wang, X., and Chen, F. 2013. Studies on potassium uptake and use efficiency of different cotton (Gossypium hirsutum L.) genotypes by grafting. J. Food, Agric. Environ. 11(1): 472– 476.
50. Yang, X.E., Liu, J.X., Wang, W.M., Ye, Z.Q., and Luo, A.C. 2004. Potassium internal use efficiency relative to growth vigor, potassium distribution, and carbohydrate allocation in rice genotypes. J Plant Nutr. 27: 837-852.
51. Yang, F.Q., Wang, G.W., Zhang, Z.Y., Eneji, A.E., Duan, L.S., Li, Z.H., Tian, X.L. 2010. Genotypic variations in potassium uptake and utilization in cotton. J. Plant Nut. 34: 83-97.
52. Zhang, Z., Tian, X., Duan, L., Wang, B., He, Z., and Li, Z. 2007. Differential responses of conventional and Bt-transgenic cotton to potassium deficiency. J. Plant Nut. 30: 659-670.
53. Zia-ul-hassan, Arshad, M. and Khalid, A. 2011. Evaluating potassium use-efficient cotton genotypes using different ranking methods. J. Plant Nut. 34: 1957-1972.