به‌کارگیری روش‌های چندمتغیره امی و تجزیه گرافیکی بای‌پلات جهت برآورد اثر برهمکنش ژنوتیپ- محیط در ژنوتیپ‌های پنبه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی، گروه زراعت و اصلاح نباتات، دانشگاه آزاد اسلامی، واحد کرج، باشگاه پژوهشگران و نخبگان جوان، کرج، ایران.

2 دانشیار، گروه زراعت و اصلاح نباتات، دانشگاه آزاد اسلامی، واحد کرج، کرج، ایران.

چکیده

مطالعه حاضر با هدف تعیین پایداری و سازگاری عملکرد وش و تجزیه‌وتحلیل اثر برهمکنش ژنوتیپ- محیط ۱۵ ژنوتیپ پنبه طی سال زراعی 1396 در چهار منطقه بیرجند، شیراز، کرج و کاشمر در قالب طرح‌ بلوک‌‌های‌ کامل تصادفی با سه تکرار پایه‌ریزی و اجرا گردید. تجزیه واریانس مرکب نشان داد که اثر محیط در سطح احتمال پنج درصد و اثر ژنوتیپ و برهمکنش ژنوتیپ- محیط در سطح احتمال یک درصد معنی‌دار است. بر اساس نتایج مدل امی تنها مؤلفه اصلی اول معنی‌داری شد و حدود 63 درصد از تغییرات برهمکنش ژنوتیپ با محیط را تبیین نمود. طبق بای‌پلات میانگین عملکرد و مقادیر مؤلفه‌ اصلی اول برهمکنش در مدل امی ژنوتیپ‌های دلتاپاین 25، اولتان، SP731، ورامین، SB35 و شیرپان 603 از برهمکنش نزدیک به صفر برخوردار بودند که در بین آن‌ها تنها دو ژنوتیپ‌ SB35 و ورامین به دلیل عملکرد بالاتر از میانگین کل به‌عنوان ژنوتیپ‌های پایدار با عملکرد بالا شناخته شدند. بر اساس تجزیه گرافیکی بای‌پلات محیط‌های تحت بررسی در دو محیط کلان قرار گرفتند و ژنوتیپ‌های سازگار و پایدار هر یک از محیط‌های کلان مشخص گردید. بیرجند و شیراز اولین محیط کلان بوده و ژنوتیپ‌های بختگان و مهر بیشترین سازگاری خصوصی را با آن‌ها نشان دادند. ژنوتیپ
 N-200 دارای بالاترین سازگاری خصوصی با مناطق کرج و کاشمر (دومین محیط کلان) بود. نمودار‌های ژنوتیپ و محیط ایده‌آل به ترتیب ژنوتیپ SB35 و محیط بیرجند را نزدیک‌ترین ژنوتیپ و محیط به ایده‌آل‌‌ترین حالت ممکن معرفی نمودند. نتایج حاصله مؤید تأثیر زیاد برهمکنش ژنوتیپ- محیط بر عملکرد وش ژنوتیپ‌های پنبه می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Using AMMI and Biplot Graphical Analysis Multivariate Methods to Evaluate the Effect of Genotype-Environment Interaction in Cotton Genotypes

نویسندگان [English]

  • Ali Saremirad 1
  • Khodadad Mostafavi 2
1 Plant breeding Ph. D. student, Department of Agronomy and Plant Breeding, Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran.
2 Associated Professor, Department of Agronomy and Plant Breeding, Karaj Branch, Islamic Azad University, Karaj, Iran.
چکیده [English]

This study aimed to determine the yield stability and adaptability and also analysis of the effect of genotype-environment interaction of 15 cotton genotypes in four regions of Birjand, Shiraz, Karaj, and Kashmar in randomized complete block design with three replications. Combined analysis of variance showed that the effect of environment was significant at the 5% level probability and the effects of genotype and genotype-environment interaction were significant at the 1% level probability. Based on AMMI model only the first main component of the interaction effect was significant and explained about 63% of changes related to the interaction of genotype with the environment. According to the biplot of average yield of genotypes and environments and first main components of interaction in the AMMI model, genotypes of DeltaPin 25, Oltan, SP731, Varamin, SB35, and Shirpan 603 had a nearly zero interaction, among them SB35 and Varamin genotypes were due to yield higher than the total mean as high yield stable genotypes. Based on graphical biplot analysis, the environments studied were located in two mega-environments and consistent genotypes were identified in each mega-environment. The first mega-environment included Birjand and Shiraz and Bakhtegan and Mehr genotypes had the most specific adaptability with them. N-200 genotype had the highest specific adaptability with Karaj and Kashmar (second mega-environment). The ideal genotypes and environment biplots, respectively, introduced SB35 and Birjand to the nearest genotype and environment to the most ideal condition. The results confirm the high effect of genotype-environment interaction on the yield of cotton genotypes.

کلیدواژه‌ها [English]

  • Polygon biplot
  • Stability
  • Cotton
  • principal component
  • Mega-environment
  1. Anandan, A., and Eswaran, R. 2009. Genotype by environment interactions of rice (Oryza sativa L.) hybrids in the east coast saline region of Tamil Nadu. In the Proceedings of 2nd International Rice Congress pp: 226.
  2. Annicchiarico, P., Russi, L., Piano, E., and Veronesi, F. 2006. Cultivar adaptation across Italian locations in four turf grass species. Crop Science, 46: 264–272.
  3. Campbell, B.T., and Jones, M.A. 2005. Assessment of cultivar x environment interactions for yield and fiber quality in cotton performance trials. Euphytica, 144: 69-78.
  4. Dehghani, H., Ebadi, A., and Yousefi, A. 2006. Biplot analysis of genotype by environment interaction for Barley yield in Iran. Agronomy Journal, 98: 388-393. 2006.
  5. Ebdon, J.S., and Gauch, H.G. 2002. Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: I. Interpretation of genotype environment interaction. Crop Science, 42: 489-496.
  6. Farshadfar, E., Mohammadi, M., Aghaee, M., and Vaisi, Z. 2012. GGE biplot analysis of genotype × environment interaction in wheat-barley disomic addition lines. Australian Journal of Crop Science, 6(6): 1074–1079.
  7. Fathi Sadabadi, M., Ranjbar, G.A., Zangi, M.R., Kazemi Tabar, S.K., and Najafi Zarini, H. 2018. Analysis of stability and adaptation of cotton genotypes using GGE biplot method. Trakia Journal of Sciences, 1: 51-61. doi:10.15547/tjs.2018.01.009
  8. Gebremedhin, W., Firew, M., and Tesfye, B. 2014. Stability analysis of food barley genotypes in northern Ethiopia. African Crop Science Journal, 22(2): 145-153.
  9. Janila, P., Nigam, S.N., Pandey, M.K., Nagesh, P., and Varshney, R.K. 2013. Groundnut improvement: use of genetic and genomic tools. Frontiers in Plant Science. February 25; 4a23. doi:10.3389/fpls.2013. 00023.
  10. Kaya, Y., Akcura, M., and Taner, S. 2006. GGE- biplot analysis of multi- environment yield trials in bread wheat. Turkish Journal Agriculture Foresty, 30: 325-337.
  11. Kempton, R.A. 1984. The use of biplot in interpreting variety by environment interaction. J. Agric. Sci. Cambridge, l22: 335- 342.
  12. Kendal, E. 2016. GGE biplot analysis of multi-environment yield trials in barley (Hordeum vulgare L.) cultivars. Ekin Journal, 2(1): 90-99.
  13. Khan, N.G., Naveed, M., and Khan, N.I. 2008a. Assessment of some novel upland cotton genotypes for yield constancy and malleability. Int. J. Agri. Biol., 10: 109-111.
  14. Khan, N.G., Naveed, M., Khan, N.I., and Iqbal, M.S. 2008b. Assessment of new upland cotton (Gossypium hirsutum L.) genotypes for yield stability and adaptability. Asian Journal of Plant Sciences, 6: 1012-1015.
  15. Khomari, A., Mostafsvi, Kh., and Mohammadi, A. 2017. Stability Study of Yield in Sunflower (Helianthus annuus L.) Cultivars using AMMI Method. Journal of Crop Breeding, 9(23): 117-124. (In Persian).
  16. Khomari, A., Mostafsvi, Kh., and Mohammadi, A. 2018. Evaluation of yield stability of winter barley varieties (Hordeum vulgare L.) using additive main effects and multiplicative interaction method. Journal of crop production, 11(2): 185-195. (In Persian). http://dx.doi.org/10.22069/ejcp.2018.13567.2043
  17. Ma’ali, S.H. 2008. Additive main effects and multiplicative interaction analysis of maize yield trials in South Africa. South African Journal of Plant and Soil, 25: 185-193.
  18. Makumbi, D., Diallo, A., Kanampiu, K., Mugo, S., and Karaya, H. 2015. Agronomic performance and genotype x environment interaction of herbicide-resistant maize varieties in Eastern Africa. Crop Science, 55: 540–555.
  19. Maleia, M.P., Raimundo, A., Moiana, L.D., Teca, J.O., Chale, F., Jamal, E., Dentor, J.N., and Adamugy, B.A. 2017. Stability and adaptability of cotton (Gossypium hirsutum L.) genotypes based on AMMI analysis. Australian journal of Crop Science, 11(04): 367-372.
  20. Mohammadi, R., and Amri, A. 2011. Cultivar x environment interaction for durum wheat grain yield and selection for drought tolerance in irrigated and droughted environments. Journal of Crop Science and Biotechnology., 14: 265-274.
  21. Mohammadi, R., Armion, M., Esmail zad, H., Ahmadi, M.M., and Sadegh zadeh ahari, D. 2012. Genotype × Environment interaction for grain yield of rainfed durum wheat using the GGE bipot model. Seed and plant improvement journal, 3(28): 503-518. (In Persian).
  22. Mostafavi, Kh., Shojaei, H., Khodarahmi, M., and Mohammadi, A. 2010. The interaction of genotype and environment in canola with using GGE biplot graphical methods, Third International Seminar of oilseeds and edible oils, Tehran, Coordination Center of Science and Industry oilseeds.
  23. Mukoyi, F., Gasura, E., and Makunde, G.S. 2018. Implications of correlations and genotype by environment interaction among cotton traits. African Crop Science Society, 26(2): 219-235.
  24. Nassir, A.L., and Ariyo, O.J. 2011. Genotype x Environment interaction and yield-stability analysis of rice grown in tropical inland swamp. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(1): 220-225.
  25. Naveed, M., Iqbal, M.S., Mukhtar, N., and Khan, N.I. 2006. Genotype environment interaction and phenotypic stability analysis for seed cotton yield in Gossypium hirsutum L. genotypes. Caderno de Pesquisa Série Biologia, 18(1): 87-97.
  26. Naveed, M., Nadeem, M., and Khan, N.I. 2007a. AMMI analysis of some upland cotton genotypes for yield stability in different milieus. World. J. Agri. Sci., 3(1): 39-44.
  27. Naveed, M., Rahman, H., and Nadeem, M. 2007b. Evaluation of Okra-leaf Pak-upland cottons (Gossypium hirsutum L.) for yield stability across environments. World Journal of Agricultural Sciences, 3(1): 45-49.
  28. Omrani, S., Naji, A.M., and Esmaeil Zadeh Moghadam, M. 2017. Yield stability analysis of promising bread wheat lines in southern warm and dry agro climatic zone of Iran using GGE biplot model. Journal of Crop Breeding, 9(23): 157-165. (In Persian).
  29. Omrani, S., Naji, A.M., and Esmaeil Zadeh Moghadam, M. 2018. Evaluation of Yield Stability of Bread wheat (Triticum aestivum L.) Genotypes using Additive Main Effects and Multiplicative Interaction (AMMI). Journal of Crop Breeding, 10(25): 73-80. (In Persian).
  30. Omrani, S., Omrani, A., Afshari, M., Saremirad, A, Bardehji, S., and Foroozesh, P. 2019. Application of additive main effects and multiplicative interaction and biplot graphical analysis multivariate methods to study of genotype-environment interaction on safflower genotypes grain yield. Journal of Crop Breeding, 11(31): 153-163.
  31. Pretorius, M.M., Allemann, J., and Smith, M.F. 2015. Use of the AMMI model to analyze cultivar-environment interaction in cotton under irrigation in South Africa. African Journal of Agriculture, 2(2): 76-80.
  32. Purchase, J. L., Hatting, H., and Van-Deventer, C.S. 2000. Cultivar x environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II Stability analysis of yield performance. South African Journal of Plant and Soil, 17: 101-107.
  33. Riaz, M., Naveed, M., Farooq, J., Mahmood, A., Rafigh, Ch.M., Nadeem, M., and Sadiq, A. 2013. AMMI analysis for stability, adaptability and GE interaction studies in cotton (Gossypium hirsutum L.). The Journal of Animal and Plant Science, 23(3): 865-871.
  34. Sabaghnia, N., Dehghani, H., and Sabaghpour, S.H. 2008. Graphic Analysis of Genotype by Environment Interaction for Lentil Yield in Iran. Agronomy Journal, 100: 760-764. (in Persian)
  35. Sadeghi, S.M., Samizadeh, H., Amiri, E., and Ashouri, M. 2011. Additive main effect sand multiplicative interactions (AMMI) analysis of dry leaf yield in tobacco hybrids across environments. African Journal of Biotechnology, 10: 4358-4364.
  36. Samonte, S.O.P.B., Wilson, L.T., Mc-Clung, A.M., and Medley, J.C. 2005. Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analysis. Crop Science, 45: 2414-2424.
  37. Stiff, M.R., and Haigler, C.H. 2012. Recent advances in cotton fiber development. Flowering and fruiting of cotton, Number eight. The cotton foundation reference book series.
  38. Yan, W., and Kang, M.S. 2003. GGE-biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, FL, USA.
  39. Yan, W., and Tinker, N.A. 2005. An integrated biplot analysis system for displaying, interpreting and exploring genotype × environment interaction. Crop Science, 45: 1004-1016.
  40. Yan, W., Cornelius, P.L. Crossa, J., and Hunt, L.A. 2001. Two type of GGE bipots for analyzing multi-environmental trial data. Crop Science, 41: 656-663.
  41. Yan, W., Hunt, L.A., Sheng, Q., and Szlavnics, Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40: 597-605.
  42. Yan, W., Kang, M.S., Ma, B., Woods, S., and Cornelius, P.L. 2007. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science, 47: 643-655.
  43. Zobel, R.W., Wright, M.J., and Gauch, H.G. 1988. Statistical analysis of a yield trial. Agronomy Journal, 80: 388-393.