بررسی روابط خصوصیات کمی و کیفی با عملکرد و اجزای عملکرد در ارقام پنبه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس مهندسی زراعی - مدیریت جهاد کشاورزی آق قلا

2 عضو هیات علمی دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 عضو هیات علمی

چکیده

سابقه و هدف: پنبه (Gossypium hirsutum) یک گیاه صنعتی مهم است که افزایش عملکرد الیاف یکی از اهداف اصلاح آن است. در تولید یک رقم زراعی خصوصیات متعددی در نظر گرفته می‎شود که اکثر آن‎ها با یکدیگر و با عملکرد همبستگی بالایی دارند. این تحقیق به‌منظور بررسی همبستگی و تجزیه ضرایب مسیر (رابطه علی معلولی بین صفات) و اجزای عملکرد در پنبه انجام شد. هدف از انجام این پژوهش شناسایی خصوصیات مؤثر بر عملکرد، درک بهتر روابط بین صفات با یکدیگر و بررسی رابطه بین عملکرد وش با اجزای آن در ارقام جدید پنبه بود.
مواد و روش‌ها: بذور مربوط به هفت دورگ ممتاز پنبه همراه با سه رقم تجاری پنبه، در آزمایشی در قالب طرح بلوک‎های کامل تصادفی با چهار تکرار در ایستگاه تحقیقاتی هاشم‌آباد در اردیبهشت سال 1397 کشت شدند. صفات ارتفاع بوته، طول و تعداد شاخه­های رویا، طول و تعداد شاخه‌های زایا، تعداد غوزه در بوته، وزن غوزه، عملکرد وش و زودرسی مورد بررسی قرار گرفت. پس از تجزیه واریانس و مقایسه میانگین صفات به روش دانکن، ضریب همبستگی بین صفات محاسبه شد و با استفاده از تجزیه رگرسیون گام به گام و تجزیه ضرایب مسیر صفات مؤثر در عملکرد شناسایی و مشخص شدند.
یافته‌ها: نتایج حاصله از انجام این آزمایش نشان داد که رقم گلستان خصوصیات کمی و کیفی مناسبی داشته و عملکرد بالایی دارد. همچنین رقم SB26 از نظر درصد کیل و ظرافت الیاف نسبت به سایر ارقام برتری داشت. نتایج بررسی همبستگی ساده بین صفات نشان داد عملکرد همبستگی مثبت و معنی‎داری با صفات تعداد شاخه رویا (668/0) و تعداد غوزه (7/0) داشته ولی همبستگی معنی‌داری با سایر صفات نشان نداد. نتایج رگرسیون گام به گام برای عملکرد نشان داد صفات تعداد غوزه، وزن غوزه و تعداد شاخه زایا مهمترین صفات در تعیین عملکرد است و در مجموع 8/83 درصد از واریانس عملکرد را توجیه نمود. همچنین تجزیه خوشه‏ای برای گروه‎بندی ارقام آن‎ها را در 4 گروه مجزا قرار داد.
نتیجهگیری: به‌طور کلی نتایج حاصل از مقایسه میانگین ارقام مورد مطالعه نشان داد هر چند بین ارقام از لحاظ عملکرد تفاوت معنی‌داری مشاهده نشد اما با توجه به مجموعه صفات، می‌توان ژنوتیپ‌های TJ82, SB7 را بدلیل آن‌که عملکرد بالای 3 تن داشتند و ژنوتیپ SB26 را به‌خاطر زودرسی، درصد کیل بالا و ظرافت الیاف به‌عنوان ژنوتیپ‌های در دست معرفی و جایگزین رقم گلستان مد نظر قرار داد و در پروژه‎های اصلاحی آتی از آن‌ها استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the relationship between quantitative and qualitative characteristics with yield and yield components in cotton cultivars

نویسندگان [English]

  • Nemat Alaedin 1
  • Saied Navabpour 2
  • Mohsen Fathi Sadabadi 3
1 www.ajgol.ir
2 2- Associate Professor, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Cotton Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
چکیده [English]

Background and objectives: Cotton (Gossypium hirsutum) is an important industrial crop where increasing fiber yield is one of the main breeding goals. Several traits are considered in plant breeding, most of which are highly correlated with each other and with yield. This study was conducted to investigate the correlation and path coefficient analysis (causal relationship) between traits and yield components in cotton. The aim of this study was to identify the traits that affect yield, to better understand the relationship between the traits, and to establish a relationship between yield and its components in new cotton varieties.
Materials and Methods: Seeds from seven of the best cotton hybrids and commercial varieties (as controls) were planted in a four-replication randomized block experiment at the Hashemabad Research Station. Plant height, length and number of unipodial branches, length and number of sympodal branches, number of bolls per plant, boll weight, cotton seed and early maturity were examined. After analysis of variance and comparison of mean traits using Duncan’s method, the correlation coefficient between traits was calculated and stepwise regression analysis and path coefficient analysis were used to identify and determine the traits affecting performance.
Results: The results in terms of quantitative traits showed that the Golestan variety had good quantitative and qualitative traits and gave a high yield. In addition, the SB26 variety was superior to the other varieties in terms of lint content and fiber fineness. The results of the simple correlation between the traits showed that the performance showed a positive and significant correlation with the number of sympodial branches and the number of bolls (0.7), but showed no significant correlation with other traits. The results of the stepwise regression for yield showed that boll number, boll weight and number of sympodial branches were the most important characteristics in determining yield and explained 83.8% of the variance in yield. In addition, the cluster analysis used to group the varieties divided them into 4 separate groups.
Conclusion: In general, the results of the mean comparison of the examined varieties showed that the genotypes TJ82 and SB7 can be proposed for future breeding projects due to a number of characteristics, although there is no significant difference between the varieties in terms of yield of traits, such as e.g. B. a yield of more than 3 tons. In addition, the early maturity, the high proportion of straw and fiber fins makes the SB26 genotype an attractive genotype as an entry genotype for future breeding projects.

کلیدواژه‌ها [English]

  • Cotton
  • Stepwise regression
  • Yield
  • Cluster analysis

Ahmadi, K., H. Ebadzadeh, F. Hatami, H. Abdeshah, and Kazemian, A. 2020. Amarnameh 2018-19. Ministry of Jihad-e-Agriculture. 1: 30-31. (in Persian with English abstract).

Ahuja, S.L., Dhayal, L.S., and Prakash, R. 2006. A Correlation and Path Coefficient Analysis of Components in G. hirsutum L. Hybrids by Usual and Fiber Quality Grouping. Turkish Journal Agriculture, 30: 317-324.

Alishah, O. 2020. Assessment of genetic variability, heritability and association of plant attributes with lint yield and fiber quality in advanced lines of cotton (Gossypium hirsutum L.). Iranian Journal of Crop Sciences, 22(4): 350-364. (in Persian with English abstract).
Alishah, O. 2014. Study on adaptability and quantitative and qualitative characteristics of hopeful cotton cultivars in mild and cold regions of Iran. Final Report Cotton Research Institute of Iran.34 p. (in Persian with English abstract)
Ashraf, M., and Harris, P.J. 2005. Abiotic Stresses: Plant Resistance through Breeding and Molecular Approaches. Haworth Press, New York.
Badri Anarjan, M., Talat, F., and Fayyaz Moghaddam, A. 2019. Yield components analyses in cotton: G.hirsutum cultivars with multivariate statistical methods. Genetika, 51(2): 595-606.
Basbag, S., and Gencer, O. 2007. Investigation of some yield and fiber quality characteristics of interspecific hybrid (Gossypium hirsutum × G. Barbadense) cotton varieties. Hereditas, 144(1): 33–42.
Baloch, M., Baloch, A.W., Ansari, U.A., Baloch, G.M., Abro, S., Gandahi, N., Hussain, G., Baloch, A.M., Ali, M., and Ahmed, I. 2016. Interrelationship analysis of yield and fiber traits in promising genotypes of upland cotton. Pure and Applied Biology, 5(2): 263–69.
Bednarz, C.W. Bridges, D.C. and Brown, S.M. 2000. Analysis of cotton yield stability across population densities. Agronomy Journal, 92: 128-135.
Damavandi Kamali, S., Babaeian Jelodar, N.and Alishah, O. 2011.The Assessment of Adaptability and Stability of Yield on Cotton Cultivars by Using Uniparametric, Non-Parametric Methods and AMMI Mode. Iranian Journal Field Crop Science, 42-2: 397-407 (In Persian).
Desalegn Z., Ratanadilok, N., and Kaveeta, R. 2009. Correlation and Heritability for Yield and Fiber Quality Parameters of Ethiopian Cotton (Gossypium hirsutum L.) Estimated from 15 (diallel) Crosses. Kasetsart Journal-Natural Science, 43, 1-11.
Fathi Sadabadi, M. Ranjbar, G. A.  Zangi, M. R.  Kazemi Tabar, S. K.  and Najafi Zarini, H. 2018. Analysis of Stability and Adaptation of Cotton Genotypes Using GGE Biplot Method. Trakia Journal of Sciences 16(1): 51.
Fry, J.D. Lang, N.S. Clifton, R.G.P. 1991. Freezing resistance and carbohydrate composition of 'Flora tam' St. Augustine grass. Horticultural Science, 26: 1537-1539.
Ghorbanpour, A. Salemi, A. Tajik Ghanbary, M.A. Pirdashti H. and Dehbashi, A. 2017. Relationship between Fruit Yield and its Components in Tomato (Lycopersicon esculentum Mill.) Cultivars using Multivariate Statistical Methods. Journal of Crop Breeding, 9(24): 22-29.
Godoy, A.S., and Polom, G.A. 2004. Genetic analysis of earliness in upland cotton G. hirsutum. I. Morphological and phonological variables. Euphytica, 105(2):155-160.
Haigler, C.H. 2010. Physiological and anatomical factors determining fiber structure and utility. In: Physiology of Cotton, pp: 33-47, By:  Stewart, J.McD., Oosterhuis, D., Heitholt, J.J.  And Mauney, J. (eds.), Springer Science+Business Media B.V.
Iqbal, M., Hayat, K., Ahmad Khan, R., Sadiq, A., and Islam, N. 2006. Correlation and path coefficient analysis for earliness and yield traits in cotton (G. hirsutum). Asian Journal of Plant Sciences, 5(2): 341-344.
Kafi, M. and Khan, M.A. 2008. Crop and forage production using saline waters. Daya Publishers, New Delhi, India.
Kakaei, M., Kahrizi, D., and Mousavi, S. S. 2016. Assessing the relationship of lint-yield and cottonseed-yield with some agro-morphological traits of Gossypium hirsutum Var. Varamin by path analysis. Iranian Journal Cotton Research, 4(2): 101-114.
Kardavan Ghabel, V., Bagher Bagherieh Najjar, M., Alishah, O., and Soltanloo, H. 2013. Correlation analysis of agronomic, fiber traits and AFLP markers in hybrid cotton (Gossypium Hirsutum × Gossypium Barbadense). Journal of Crop Breeding, 5 (12): 63-74.
Khan, A.I., Sadaqat, H.A., Khan, T.M., and Rauf, S. 2004. Correlation and path coefficient analysis of yield components in cotton (Gossypium hirsutum L.). International Journal of Agricultural and Biology, 6: 4. 686-688
Mehrabadi, H.R., Nezami, A., Kafe, M., and Ramazani Moghadam, M.R. 2015. Search for yield, yield components, correlation coefficients and path analysis cotton varieties under drought stress. Journal Crop Production and Processing, 5(17): 217-227.
Mc Daniel R.G. 2000. Genetic manipulation of cotton leaf stomata density to enhance drought tolerance. Proceeding of the Belt wide cotton conference. 1: 562-564.
Morton, W.E. and Hearle, J. W. S. 2008. Physical Properties of Textile Fibers. Pp. 97-133. Fiber fineness and transverse dimensions. Wood head publishing.
Pandey, S.K., Singh, P., and. Pandey, S.B. 2003. Analysis of character association in upland Cotton (Gossypium hirsutum L.). Progressive Agriculture, 3: 1-2. 139-140.
Ramazani-Moghadam, M.R., Majidi, I., Zamanizadeh, H.R., Mohamadi, S.A., and Azizi, M. 2005. Study on genetic diversity in diploid cotton (Gossypium. herbaceum, G. arboreum) using morphological traits. J. Agri. Sci. Islamic Azad University, 12: 821-831.
Ramezanpour, S.S., Hosseinzadeh, A.H., Zeinali, H., and Vafaeitabar, M.R. 2002. A study on relationship between morphological and agronomic traits and seed cotton yield in 56 glandless cotton varieties (Gossypium hirsutum L.) using multivariate statistical methods. Iranian Journal of Agricultural Science, 33(1): 103-113.
Sezener, V., Kabakci, Y. Yavas I. and Unay, A. 2006. A clustering study on selection of parents in cotton breeding. Asian J. Plant Sci. 5(6): 1031–34.
Stiller, W.N., and Eveleigh, R.R. 2000. Varietal characteristics for adaptation of cotton (Gossypium hirsutum) to rain grown conditions. Proceedings of the 9th Australian Agricultural Congress, Wegga, Australia. pp. 395-362.
Vafaie-Tabar, M., and Tajik Khaveh, Z. 2014. Statical analysis of correlation between yield and earliness, and other trait of upland cotton varieties (Gossypium hirsutum). Iranian J. Cotton Research, 1:2. 19-34.
Vinocur, B., Altman, A. 2005. Resent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Current Opinion in Biotechnology, 16: 123-132.
Wang, B., Guo, W., Zhu, X., Wu, Y., Huang, N., and Zhang, T. 2007. QTL mapping of yield components for Elite Hybrid derived-RILs in upland cotton. Elsevier Boulton, 34: 1. 35-45.
Wu, J., J.N. Jenkins, J.C. McCarty and J. Zhu. 2004. Genetic association of yield with its component traits in a recombinant inbred line population of cotton. Euphytica, 140(3): 171–179.
Zeng, L. and Wu, J. 2012. Germplasm for genetic improvement of lint yield in upland cotton: genetic analysis   of    lint    yield    with   yield    components.   Euphytica, 187(2): 247–61.