شناسایی ژنوتیپ‌های برتر پنبه با استفاده از شاخص‌های گزینشی مبتنی بر صفات مختلف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، ایران، داراب

2 معاون پژوهشی موسسه تحقیقات پنبه کشور

10.22092/ijcr.2024.366121.1218

چکیده

سابقه و هدف: پنبه از نظر اقتصادی، یکی از مهمترین محصولات صنعتی در جهان است که برای تولید الیاف و دانه‌ی روغنی کشت می‌شود. تعیین خصوصیات ژرم‌پلاسم از نظر صفات مورد نظر، ایجاد جمعیت‌های اصلاحی را که برای دستیابی به اهداف خاص طراحی می‌شوند، تسهیل می‌کند. این پژوهش به‌منظور بررسی تنوع ژنتیکی ژنوتیپ‌های امیدبخش پنبه و انتخاب ژنوتیپ‌های برتر انجام گرفت.
مواد و روش‌ها: به منظور مطالعه برخی خصوصیات زراعی و شناسایی ژنوتیپ‏های مطلوب با استفاده از روش‎های آماری مختلف، 12 ژنوتیپ پنبه به همراه 2 رقم تجاری منطقه شامل بختگان و گلستان (به عنوان شاهد) در قالب طرح بلوک-های کامل تصادفی با چهار تکرار در ایستگاه تحقیقات کشاورزی حسن‌آباد داراب، در سال زراعی 1401-1400 مورد ارزیابی قرار گرفت.
یافته‌ها: نتابج تجزیه واریانس مرکب نشان داد که اثر رقم بر کلیه صفات مورد مطالعه در سطح احتمال 1 درصد معنی‌دار بود و تنوع ژنتیکی معنی‏داری بین ژنوتیپ‌های مورد مطالعه وجود داشت.بر اساس نتایج روش‎های مختلف آماری شامل تجزیه خوشه‌ای، بای‎پلات ژنوتیپ × صفت (GTbiplot)، فاصله ژنوتیپ-ایدئوتیپ چندصفتی (MGIDI) و شاخص انتخاب ژنوتیپ ایده‌آل (SIIG) ژنوتیپ‎های AM-742، Tj82 و AM-1525 به‎عنوان ژنوتیپ برتر و ژنوتیپ‎های 90-10699، بختگان و TTb-17 به‎عنوان ضعیف‎ترین ژنوتیپ‏ها شناخته شدند. بر اساس نتایج تجزیه خوشه‌ای، ژنوتیپ‌های پنبه در سه گروه متمایز طبقه‌بندی شدند که این موضوع انتخاب و استفاده از آنها در برنامه‌ها و اهداف مختلف به‌نژادی را تسهیل می‌کند. ژنوتیپ Am-742 در خوشه سوم جای گرفت و دارای بیشترین میانگین عملکرد وش، طول الیاف، استحکام الیاف، تعداد غوزه در بوته و زودرسی بود. تجزیه گرافیکی GTbiplot نشان داد در ژنوتیپ‌های AM-1525 و TTb-14 تنوع بیشتری نسبت به سایر ژنوتیپ‌های مورد بررسی وجود دارد. همچنین نتایج نشان داد که ژنوتیپ AM-1525 با رقم بختگان، از نظر صفات مختلف با هم تفاوت زیادی دارند و می‌توان در برنامه‌های اصلاحی جهت نیل به حداکثر تنوع و بدست آوردن هیبریدهایی با عملکرد مطلوب، زودرس و دارای وزن و تعداد غوزه بالا، از این ژنوتیپ‌ها استفاده نمود. نتایج تجزیه REML حاکی از آن بود، که بیشترین مقدار وراﺛـﺖپـﺬﯾﺮی ﻋﻤـﻮمی مربوط به استحکام الیاف پنبه (89/0) و کمﺗـﺮﯾﻦ ﻣﻘـﺪار وراﺛـﺖپـﺬﯾﺮی ﻋﻤﻮمی ﻣﺮﺑﻮط ﺑﻪ ﻋﻤﻠکرد داﻧﻪ (43/0) و درصد زودرسی (49/0) ﺑﻮد.
نتیجه‌گیری: ژنوتیپ‌های AM-742، Tj82 و AM-1525 قابلیت معرفی شدن به عنوان ارقام جدید و همچنین استفاده در برنامه‌های اصلاحی برای ایجاد تنوع ژنتیکی بالاتر را دارند. ژنوتیپ AM-742 ضمن داشتن عملکرد بالا، زودرس‌تر از دیگر ژنوتیپ‌های مورد بررسی می‌باشد. ژنوتیپ Tj82دارای بیشترین تعداد غوزه در بوته بوده و از نظر سایر صفات مورد بررسی بالاتر از مقدار میانگین ژنوتیپ‌های مورد مطالعه می‌باشد. این خصوصیات می‌تواند برای اصلاح ارقام تجاری و تولید رقم جدید در برنامه‌های اصلاحی مدنظر قرار گیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of Superior Cotton Cultivars using selection indexes of multi-trait

نویسندگان [English]

  • mitra vanda 1
  • omran alishah 2
1 Fars Agricultural and Natural Resources Research and Education Center, Iran. Darab
2 Cotton Research Institute
چکیده [English]

Background and Objective: Cotton is one of the most important industrial crops worldwide, cultivated for fiber production and oilseed. Determining the germplasm characteristics in terms of desired traits facilitates the development of breeding populations designed to achieve specific goals. This study aimed to investigate the genetic diversity of promising cotton genotypes and select superior genotypes.
Materials and Methods: In order to study some agronomic traits and identify desirable genotypes using various statistical methods, 12 cotton genotypes along with 2 commercial varieties of the region including Bakhtegan and Golestan (as controls) were evaluated in a randomized complete block design with four replications at HassnabadDarab Agricultural Research Station during the 2021-2022 crop year.
Results: The combined analysis of variance showed that the effect of genotype was significant for all studied traits at a 1% probability level, indicating significant genetic diversity among the studied genotypes. Based on the results of statistical various methods including cluster analysis, genotype × trait biplot (GTbiplot), multivariate genotype-ideotype distance index (MGIDI), and selection index of ideal genotype (SIIG), genotypes AM-742, Tj82, and AM-1525 were identified as the top performers, while genotypes 90-10699, Bakhtegan, and TTb-17 were recognized as the weakest genotypes. According to the cluster analysis, cotton genotypes were classified into three distinct groups, facilitating their selection and use in various breeding programs and objectives. Genotype Am-742 ranked third in the cluster and had the highest mean performance in terms of yield, fiber length, fiber strength, boll count per plant, and earliness. GTbiplot analysis showed that AM-1525 and TTb-14 genotypes exhibited greater diversity compared to other studied genotypes. Furthermore, the results showed that the AM-1525 genotype and the Bakhtegan cultivar are very different in terms of various traits and suggesting their potential use in breeding programs to achieve maximum diversity and obtain hybrids with desirable performance, early maturity, and high boll weight and count. REML analysis results indicated that the highest heritability value belonged to fiber strength (0.89), while the lowest heritability values were related to yield (0.43) and earliness percentage (0.49).
Conclusion: genotypes AM-742, Tj82, and AM-1525 have the potential to be introduced as new varieties and used in breeding programs to create higher genetic diversity. Genotype AM-742, in addition to its high yield, is earlier than other genotypes under investigation. Genotype Tj82 has the highest number of bolls per plant and higher values in other studied traits compared to the average of the investigated genotypes. These characteristics can be utilized in the improvement of commercial varieties and the development of new varieties in breeding programs.

کلیدواژه‌ها [English]

  • Cotton
  • GTBiplot Graphical Analysis
  • Selection Index of Ideal Genotype
  • Yield
  • Fiber Quality
  1. Alishah, O. 2021. Assessment of genetic variability, heritability and association of plant attributes with lint yield and fiber quality in advanced lines of cotton (Gossypium hirsutum). Iranian Journal of Crop Sciences, 22(4): 350-364. (in Persian with English abstract).

2.    Basbag, S., and Gencer, O. 2007. Investigation of some yield and fibre quality characteristics of inter specific hybrid (G. hirsutum L. × G. Barbadense L.) cotton varieties. Hereditas, 144(1): 33–42.

3.     Bizari, E. H., Pedroso Val, B. H., Pereira, E. M., Di Mauro, A.O., and Uneda-Trevisoli, S. 2017. Selection indices for agronomic traits in segregating populations of soybean. Revista Ciencia Agronomy, 48: 110- 117.

  1. Devidas, A.A., Narayan, S.A., and Prakash, P.N. 2017. Study of genetic variability, heritability and genetic advance in study of genetic variability, heritability and genetic advance in some genotypes of Egyptian cotton (Gossypium barbadense). Journal of Global Biosciences, 6(4): 4954 -57.

5.    Hwang, C.L., and Yoon, K. 1981. Multiple attribute decision making: methods and applications. Springer-Verlag, Berlin Heidelberg, pp: 58-191.

6.    Jalalifar. R., Sabouri, A., Mousanejad, S., and Dadras, A.R. 2023. Estimation of Genetic Parameters and Identification of Leaf Blast-Resistant Rice RILs Using Cluster Analysis and MGIDI. Agronomy, 13(11): 2730.

  1. Mamun, A.A., Islam, M.M., Adhikary, S.K., and Sultana, M.S. 2022. Resolution of genetic variability and selection of novel genotypes in EMS induced rice mutants based on quantitative traits through MGIDI. International Journal of Agriculture Biology, 28:100‒112.
  2. Olivoto, T., and Lucio, A.D.C. 2020. Metan: An R package for multi‐environment trial analysis. Methods in Ecology and Evolution, 11(6): 783-789.
  3. Olivoto, T., and Nardino, M. 2020. MGIDI: A novel multi-trait index for genotype selection in plant breeding. bioRxiv, 2020.2007.2023.217778.

10. Peixoto, M.A., Evangelista, J.S.P.C., Coelho, I.F., Carvalho, L.P., Farias, F.J.C., Teodoro P.E., and Bhering, L.L. 2022. Genotype selection based on multiple traits in cotton crops: The application of genotype by yield*trait biplot. Acta Scientiarum Agronomy, 44:e54136.

  1. Pour-Aboughadareh, A., Koohkan, S., Zali, H., Marzooghian, A., Gholipour, A., Kheirgo, M., Barati, A., Bocianowski, J. and Askari-Kelestani, A. 2023. Identification of high-yielding genotypes of barley in the warm regions of Iran. Plants, 12(22): 1-13.
  2. Rahemi, M.R., and Alishah, O. 2022. Investigating the effect of morphological, qualitative and yield traits in order to identify the most promising cotton genotypes in Hashemabad, Gorgan. Iranian Journal Cotton Researches, 10(1): 133-148. (in Persian with English abstract).
  3. Ramazani-Moghadam, M.R., Zamanizadeh, H.R., Mohamadi S.A., and Azizi, A. 2007. Study on genetic diversity in diploid cotton using morphological traits. Journal of Agricultural of Sciences Islamic Azad University, 12(4): 821-831. (in Persian with English abstract).
  4. Ramazanpour, S., Abdolhadi, H., Zenali H., and Vafaietabar, M. 2001. Relationships some morphological traits with yield crop varieties, cotton glandless through multivariate statistical methods, Iranian Journal Agricultural of Sciences, 32: 103-113. (in Persian with English abstract).

15. Rathinavel, K. 2018. Principal component analysis with quantitative traits in extant cotton varieties (Gossypium hirsutum L.) and parental lines for diversity. Current Agriculture Research Journal, 6(1): 54-64.

16. Sedigh, S., Zabet, M., Ghaderi, M.G., and Samadzadeh, A.R. 2016. Identification of superior varieties of cotton (Gossypium hirsutum L.) under drought stress and normal conditions using GGEBiplot and GTBiplot method in Birjand. Journal of Crop Breeding, 8(19): 134-144. (in Persian with English abstract).

17. Sedigh, S., Zabet, M., Ghaderi, M.G., and Samadzadeh, A.R. 2015. Determination of the suitable indices for drought tolerance in cotton genotypes. Iranian Journal of Cotton Researches, 3(2): 41-53. (in Persian with English abstract).

  1. Sekloka, E., Sabi, A.K., Zinsou, V.A., Aboudou, A., Ndogbe, C.K., Afouda, L. and Baba-Moussa,L. 2018. Phenological, morphological and agronomic characterization of sixteen genotypes of cotton plant (Gossypium hirsutum) in rainfed condition in Benin. Journal of Plant Breeding and Crop Science, 10(2): 33-40.

19. SeyedMasoum, S.Y., Sofalian, O., Asghari, A., Sedghi, M., and Zangi, M.R. 2022. Selection and introduction of high yield and early cotton cultivars from advanced cultivars in Ardabil province. Iranian Journal Cotton Researches, 9(2): 165-177. (in Persian with English abstract).

20. Sezener, V., Kabakci, Y., Yavas, I., and Unay, A. 2006. A clustering study on selection of parents in cotton breeding. Asian Journal of. Plant Sciences, 5(6): 1031–34.

21. Shayan. S., Vahed, M. M., Mohammadi, S. A., Ghassemi-Golezani, K., Sadeghpour, F., and Yousefi, A. (2020). Genetic diversity and grouping of winter barley genotypes for root characteristics and ISSR markers. Plant Productions, 43(3), 323-336. (in Persian with English abstract)

  1. Talat, F., Badri-Anarjan, M., and Setoodehmaram, K. 2018. Multivariate analysis of quantitative and qualitative characteristics of hopeful cotton varieties under cold weather conditions. Iranian Journal of Field Crop Science, 49(1): 179-195. (in Persian with English abstract).

23. Vanda M, Hekmat, M., and Alishah, O. 2022. Investigation of Genetic Diversity and Identification of Superior Cotton Cultivars (Gossypium hirsutum L.) using SIIG Index. Journal of Crop Breeding; 14(44): 181-189. (in Persian with English abstract).24. Vanda M, Hekmat, M., and Alishah, O. 2023. Selection of Superior Cotton Cultivars (Gossypiume hirsutum L.) using GTBiplot model. Journal of Crop Breeding; 15(47): 134-146. (in Persian with English abstract).

  1. Yan, W. GGE Biplot- A windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agronomy Journal, 93: 1111-1118.
  2. Yan, W., and Fregeau-Reid, J.2018. Genotype by Yield∗Trait (GYT) Biplot: A novel approach for genotype selection based on multiple traits. Scientific Reports, 8: 1-10.
  3. Yan, W., and Rajcan, I.2002. Biplot evaluation of test sites and trait relations of soybean in Ontario. Crop Science, 42:11-20.
  4. Yan, W., and Tinker, N.A. 2005. An integrated biplot analysis system for displaying, interpreting and exploring genotype environment interaction. Crop Science, 45: 1004-1016.
  5. Yan, W., Kang, M.S., Ma, B., Woods, S., and Cornelius, P.L. 2007. GGE biplot vs. AMMI analysis of genotype by environment data. Crop Science, 47: 643-655.
  6. Zali, H., and Barati, A. 2020. Evaluation of selection index of ideal genotype (SIIG) in other to selection of barley promising lines with high yield and desirable agronomy traits. Journal of Crop Breeding, 12(34): 93-104. (In Persian with English abstract).
  7. Zali, H., Sofalian, O., Hasanloo, T., Asghari A., and Zeinalabedini, M. 2016. Appropriate strategies for selection of drought tolerant genotypes in canola. Journal of Crop Breeding, 78(20): 77-90. (In Persian with English abstract).
  8. Zali, H., Sofalian, O., Hasanloo, T., Asghariand A., and Hoseini, S.M. 2015. Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. Biological Forum – An International Journal, 7(2): 703-711. (In Persian with English abstract).